

environment programme

Strengthening environmental action in the One Health response to antimicrobial resistance

Strengthening Environmental Action in the One Health Response to Antimicrobial Resistance

Anthony D. So, MD, MPA

Innovation+Design Enabling Access (IDEA) Initiative

Johns Hopkins Bloomberg School of Public Health

South Centre – Environmental Aspects of Antimicrobial Resistance Virtual Workshop

March 28, 2023

Significance of UNEP's *Bracing for Superbugs*

Global spotlight report that drew clearer linkage between tackling antimicrobial resistance (AMR) and environment

Environmental dimensions of AMR, while complex, still afford opportunity to take steps actionable on today's evidence UN @ environmen FRONTIERS 2017 **Emerging Issues of Environmental Concern** 5 Environmental Dimensions of **Antimicrobial Resistance**

Why Environment Matters in Tackling AMR

UNEP joining the Tripartite agencies (WHO, FAO, WOAH) in 2022 to form a Quadripartite

The lens of environment and AMR:

-- Broadens the range of Ministries and movements to which AMR finds relevance

-- Brings a unifying systems frame to addressing the challenge of AMR

Magnitude of AMR Challenge

Lancet GRAM study (2022):

- 1.27 M deaths attributable to bacterial AMR in 2019

- Global deaths attributable to AMR greater than HIV/AIDS, breast cancer or malaria

- One in five people who died due to AMR were children

- Highest rate of AMR burden was in sub-Saharan Africa, followed by South Asia

Regional Analysis

	Attributable to resistance				Betes per 100.000			
	Deaths	YLLs	DALYs	YLDs	Rates, per 100,000			
Counts, thousands								
Global	1270	47 600	47 900	275	16·4	615-1	618·7	3-6
	(911–1710)	(35 000–63 400)	(35 300-63 700)	(161–439)	(11·8-22·0)	(452-4-819-1)	(455·7–823·2)	(2·1–5·7)
Central Europe, eastern	73·7	1980	1990	9·95	17·6	474-3	476-7	2-4
Europe, and central Asia	(48·7-105)	(1350-2790)	(1360–2800)	(4·79–16·8)	(11·7-25·3)	(323-0-667-3)	(325-2-671-0)	(1-1-4-0)
High income	141	2390	2410	20-2	13·0	220-4	222·3	1·9
	(98·6-197)	(1620-3400)	(1640-3420)	(12-7-31-2)	(9·1–18·2)	(149-9-314-0)	(151·5–315·9)	(1·2–2·9)
Latin America and Caribbean	84·3	2370	2380	16	14·4	405-3	408·1	2·7
	(60·3-117)	(1660-3310)	(1680-3330)	(9·79–24·9)	(10·3-20·0)	(284-8-566-6)	(286·9-570·0)	(1·7-4·3)
North Africa and Middle East	68-3	2590	2610	20-7	11-2	425-6	429-0	3·4
	(45-6-99)	(1770–3700)	(1790-3720)	(12-33-5)	(7-5-16-3)	(291-2-608-4)	(293-7-611-5)	(2·0-5·5)
South Asia	389	16 000	16 100	111	21.5	885-8	892·0	6-2
	(273-538)	(11 500-21 600)	(11 600-21 700)	(58·5–188)	(15.1-29.8)	(636-3-1194-6)	(643·1-1200·2)	(3-2-10-4)
Southeast Asia, east Asia,	254	6830	6870	45-6	11.7	316-1	318-2	2-1
and Oceania	(167–369)	(4620-9840)	(4670-9890)	(25–80-1)	(7-8–17-1)	(213-9-455-7)	(216-1-458-0)	(1-2-3-7)
Sub-Saharan Africa	255	15400	15500	51-1	23.7	1432-0	1436-7	4-7
	(196-331)	(11700-19900)	(11800-20000)	(30-2–81-8)	(18-2-30-7)	(1084-6-1848-1)	(1090-0-1853-5)	(2-8-7-6)

Source: Global burden of antimicrobial resistance in 2019: a systematic analysis. Lancet, 2022.

Transmission of AMR through the Environment

- Natural vs. acquired resistance
- Antimicrobial drugs vs. Antibioticresistant genes vs. Drug-resistant pathogens
- AMR hotspots
- Urbanization
- Globalization
- Economic value chains

Source: UNEP, Bracing for Superbugs, 2023.

SDG 12: Responsible consumption and production

Key Economic Sector Value Chains

Pharmaceutical manufacturing Food production systems Healthcare delivery

Pharmaceutical Manufacturing

SETTING DISCHARGE TARGETS - PNECS

IMPROVING SUPPLY CHAIN TRANSPARENCY

PROMOTING SUSTAINABLE PROCUREMENT AND REIMBURSEMENT SYSTEMS

Option 2: Wastewater is sent to a municipal wastewater treatment plant, before being discharged into the environment

Wastewater discharges from pharmaceutical manufacturing

Source: UNEP, Bracing for Superbugs, 2023.

Healthcare Delivery System

Hospitals: Waste treatment, greening programs, procurement

Community disposal of expired antibiotics

AMR Surveillance: Piggybacking on Poliovirus Lab Network and COVID-19 wastewater surveillance

Source: Bio Intelligence Service, 2013

Food Systems

Antibiotic growth promoters and routine use of antimicrobials in livestock production

- Need for transparency of WOAH country-level data on antimicrobial consumption
- Use of antimicrobials in crop production
- Trade in food products

Pathways from Agri-Food Systems to Human Medicine: From Farm to Fork

Annually, 600 million cases of foodborne diseases, with 420,000 deaths (WHO, 2015)

- Extensively-drug resistant (XDR) typhoid
 in Pakistan
- Pork from UK supermarkets

Urinary tract infections from retail poultry meat (Liu CM, et al., 2018)

Plasmid-mediated resistance to colistin, a last-line antibiotic in China (Liu YY, et al., 2016)

Source: Jadeja NB, Worrich A. From gut to mud: dissemination of antimicrobial resistance between animal and agricultural niches. Environ Microbiol. 2022 Feb 16. (CC license)

Climate Change and AMR

Climate Change → Antimicrobial Use

Higher temperature associated with greater antibiotic resistance

Infectious diseases increase \rightarrow Antimicrobial use increases

Pressure on food production systems \rightarrow Increased use of antimicrobials

Antimicrobial Use \rightarrow Climate Change?

Cattle treated with antibiotics produced 1.8 times more methane, a potent greenhouse gas (Hammer TJ, et al., 2016)

Source: Hammer TJ, Fierer N, Hardwick B, et al. Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles. *Proc R. Soc. B* 2016; 283: 20160150

Other Environmental Exposures and AMR

Herbicides and AMR

Herbicides (glyphosate, 2,4-D and dicamba) can induce greater tolerance to antibiotics (Kurenbach, et al., 2015).

Glyphosate, glufosinate and dicamba increase the prevalence of antibiotic resistance genes in agricultural soils (Liao, et al., 2021)

Microplastics and AMR (Arias-Andres, et al. 2018)

→ Plasmid uptake frequency by bacteria on microplastic biofilms is two orders of magnitude higher than by free-living bacteria (Arias-Andres, et al., 2018)

AMR Containment: "one of the highest-yield investments countries can make"

- Up to 24 million more people would be forced into extreme poverty by 2030 (World Bank, 2017)
- In high AMR-impact scenario, 3.8% loss of annual GDP by 2050, with annual shortfall of \$3.4 trillion by 2030
- "putting resources into AMR containment now is one of the highest-yield investments countries can make."

Making the case for investing to address AMR

Averting the human and economic toll

Synergy with COVID-19

Co-Benefits, from Health Care to Sustainable Food Systems

Connection with other movements

A MULTI-BILLION-DOLLAR OPPORTUNITY

Repurposing agricultural support to transform food systems

